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FOREWORD

This report was prepared by Aerojet-General Corporation, Downey,
California, on Air Force Contract AF 04(611)- 10919, which sup-
ports the USAF Solid Propellant Hazards Study Program (Project
SOPHY), Project 63A00201. The period covered by this report is
1 December 1966 through 28 February 1967.
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ABSTRACr

Verification that the sustainment theory of critical geome-
try can be applied to an adulterated propellant different
from that by which the theory was originally developed
has been obtained from tests of square column and hollow-
core cylindrical shapes. The effect of pulse width on the
minimum shock pressure required to initiate detonation
has been determined experimentally by flyer-plate tests.
The initiation criteria for three different RDX-adulterated
PBAN-type propellants have boon determined. From these.
the minimum shock pressure required to i'.itiate detonation
of unadulterated propellant is predicted to be approximately
20 kbar at critical diameter and 10 kbar at ideal diameter,

t.
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INTRODUCTION

This quarterly report is the sixth of a series of reports partially ful-

Explosives Hazard Study Program. The purpose of this program is
to gain additional knowledve and to develor, ncw tochnici,.io for atna-

lyzing the explosives hazard and damage potential of large solid-pro-
pellant r-cket motors.

The objectives of this program are (1) to determine the influence of
grain shape on propellant detonability and sensitivity, (2) to determine
the critical diameter of a typical solid-composite rocket-motor pro-
pellant, (3) to determine what changes a solid-propellant g-7in might
undergo when exposed to operational mishaps, and (4) to develop
methods to simulate and characterize these changes.

2. SUMMARY

The critical-geometry sustainment theory has been applied to square
colirmns and circular-and cross-core cylinders of AAB-3225. The ex-
perimental results from tests at the statistical 3-sigma limits around
the predicted mean critical geometries have agreed with theory. Testing

in this subtask will be completed by mid-May.

The effect of pulse width on the shock pressure required to initiate deto-nation has been investigated experimentally using 4-in. diameter AAB-

3189 propellant samples and aluminum flyer plates. The data suggest
"that (I) minimum shock pressure required to initiate detonation de-
creases as the pulse width is increased, but (2) there is a lower limit

. to the minimum initiating pressure, below which initiation of detonation
cannot occur with any pulse width.

Card-gap sensitivity test results, obtained at sample diameters from

near-critical to near-ideal, indicate that with less RDX in the formula-

tion, a lower shock pressure will initiate detonation of a near-critical

sample. However, at the Ideal-diameter region, the sensitivities of
"these propellants are essentially indistinguishable from one another.
This set of observations suggests that the sensitivity of unadulterated
propellant is rather high; i. e., full-diameter shock pressures in the

neighborhood of 10 to 15 kbars may produce detonation.

I_
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New areas of investigation are discussed, which have been added to the
technical objectives of this contract, to be performed within a 2-1/2
month extension granted by the Air Forc. contracting officer.

3. THEORY OF CRITICAL GEOMETRY

3. 1 TECHNICAL DISCUSSION -- PHASE I SUBTASKS

3. 1. 1 Detonation Velocity as a Function of Size (Subtask 3. 2, 3*:)

This subtask is concerned with determining whether the nonideal doto-
nation behavior of solid composite propellant can be described by the
modified Jones expression that was used in the development of the
Aerojet detonation model (Reference 2). Data have been acquired on

the detonation velocities of several sizes of cylinders cast from AAB-
3189 propellant (adulterated with 9. 2% RDX) and AAB..3225 (7. 1% RDX).
The complete analysis of these data is almost finished. The results
will be reported in the next monthly report, to be distributed in April.

3.2 TECHNICAL DISCUSSION -- PHASE 2 SUBTASKS

3. 2. 1 Verification of Theory (Subtask 3. 3, 3)

This subtask is concerned with determining whether the sustainment
theory of critical geometry can be applied to a propellant that is differ-
ent fromn the formulation used during its initial evaluation. The original
critical geometry concept stated that for a given material there ic one

value of the critical geometry that defines the critical size of any shapef sample, Lelow which detonation cannot be achieved, This value is equal
to the critical diameter. For any shape it is equal to four times the

area divided by the total perimeter of the cross-section that is normal
to the direction of the reaction wave, This hypothesis was evaluated by
experimental investigations during SOPHY I and SOPHY II, under Con-
tracts AF 04(611)-9945 and AF 04(611)-10919, respectively, using AAB-
3189 propellant, which is an adulterated PBAN-type propellant containing

*Subtask number refers to the paragraph number in the Program Plan

(Reference 1) that locates the description of that particular series of
tests,

1I1
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9.1256 RDX by weight. From the results of these tests it was concluded

that the theory predicted larger sizes to be critical than were actually

found. Redefining (ritical geometry as the ratio of four times the ;irea

and the perimeter, for each shape, it' was stated that for nonperforated

(L e. ' solid cross-section) shapes, the critical geometry is 92 to 95%

of the critical diameter and for perforated shapes it 68% of the critical

diameter (Reference 3).

Under Subtask 3. 2. 2, the standard deviation in the critical diameter test
results for samples cast from AAB-3225 (7. 116 RDX) was found to be

0.11 in. (Reference 4). This study was made so that it Nvould be possible

to. design the seri.s of tests required in the critical geometry verifica-

tion, which used the AAB-3225 material. Mean critical geometries were

.calculated for AAB-3225 intsquare columns, circular-core cylinders,
and cross-core cylinders. 'ISamples were cast at sizes that were three

standard deviations below the predicted mean critical size and three

standard deviations above. I This approach was adopted instead of actually
determining the mean critical geometries because it required many less

,,samples and, consequently, was less costly.

The circular-core cylinders were tested in two series: one with a 3-in.
diameter core and the otherwith a 6-in. diameter core. The cross-core

samples similarly were div*ded into two series, with core sizes com-
parable to the circular-core sizes.

All'sample• are instrumented with ionization-type probes to obtain data
from whichthe velocity of the reaction wave is computed. The criterion
for'sustain mrent with the square ýshape is the stabilization of. the detonation
velocity over the lower half of the charge, which originally is four times

as long as the side. of the square cross-section. Hollow-core cylinders

have presented a special problem in critical geometry tests because
of the formation of central cavity jetting and tlhe influence of the jet
on the detonative behavior of the grain (Reference 3). The concept of

pseudocritical geometry was introduced to allow full evaluation of the
critical-geometry theory by essentially compensating for the abnormal

behavior that is characteristic of the hollow cylinder. If sustainment
is clearly evident over the upper portion of the charge, it is assumed

that the charge is above the pseudocritical geometry. This principle
must be applied only when the test conditions are so established as to

ensure thal(ll) thesamnple is not highly overboostered, and (2) the jet is
prevented f om being formed bv the booster. The first condition simpli-
fies analysis of the data because a size that is below the pseudocritical
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size will very quickly show attenuation of the shockwave, and a larger
size (above pseudocritical) will propagate at a sustained velocity more
quickly. The second condition delays the formation of the jet and there-
by prolongs the period where jet-interference is absent.

FUr Mhe LeUL deUigxi adopLed ill Lhib tuubLask Lhe larger vized uf mZy b erie
are expected to detonate, and the smaller sizes to fail. The results show
complete agreement with the predictions (Table 1). With the hollow-core
samples, the ones that did satisfy the requirements for being above the
pseudocritical size showed sustained propagation for most of the sample
length. In the 8-in. OD samples, the sustainment lasted for 20 to 36 in.
in the ll-in. OD samples, for 35 to 40 in.

In cases where the hollow cylinders did not satisfy the requirements
(i. e., the no go's) the velocity of the reaction wave at the middle of the
web attenuated to below critical velocity within 2 in.

As shown in Table 1, all tests have not yet been performed. The larger
size samples originally had been scheduled for testing at the Aerojet

ordnance laboratory in Chino with all the others, but the large number
and range of the burning propellant fragments have forced cancellation
of this schedule and substitution of the 1-36D area at AFRPL, Edwards,
as the test site. The tests will be completed within a few weeks.

3. 2. 2 Initiation Pressure vs Pulse Width (Subtask 3. 3.4)

The objective of this subtask is to investigate the relationship between
the shock pressure required to initiate detonation and the pulse-width
of the shock wave. This study is a preliminary study for the broadened
initiation criterion that considers shock pressure, shockwave area, and
pulse width to be the three determining parameters of initiation to deto-
nation. In-the study of the pressure-pulse width relationship, the flyer-
plate technique was applied.

iI
3.2.2.1 Background

When one condensed material impacts another, the shock pressure and
pulse duration are calculated from knowledge of the test conditions and
the Hugoniot equations of state of the two materials. In this particular

.. ....
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Table 1. Critical Geometry -- Verification of
Sustainment Theory, Using AAB-3225.

Inner Outer
Dimension Dimension Test Detonation Test

Shape (izi.) (in.) Result Velocity No.

4-1/2 x 4-1/2 No-go N/A 3.3.3.3
4-1/2 x 4-1/2 No-go N/A 3.3.3.14
4-1/2 x 4-I/2 No-go NIA 3.3.3.15
4-1/2 x 4-1/2 No-go N/A 3.3.3.17

Square column N/A 5-1/8 x -1I/8 Go 4. 11 3.3.3.5

5-1/8 x 5-1/8 Go 4. 19 3.3.3.9
5-1/8 x 5-1/8 Go 4. 11 3.3.3.16

7-1/4 No-go N/A 3.3.3.1
7-1/4 No-go N/A 3.3.3.6
7-1/4 No-go N/A 3.3.3.22

Circular-core 3 7-1/4 No-go N/A 3.3,3.23

cylinder 8 Go 4.29 3.3.3.2
8 Go 4.35 3.3.3.11
8 Go 4.21 3.3.3.24
8 Go 4.29 3.3.3.25

6 10-1/4 No-go N/A 3.3.3.13
I I1 Go 4.43 3.3.3.19

7-1/4 No-go NIA

7-1/4 No-go N/A 3.3.3.8

LII 7-1/4 No-go N/A 3.3.3. 10
rrs-oe7-1/4 No-go N/A 3.3.3.21•' " •Cross-core

cylinder 3 x 3 cross 8 Go 4.39 3.3.3.5
8 Go 4.34 3.3.3.12
8 Go 4.40 3.3.3.26

81 Go 4.40 3.3.31

6 x 6 cross 1 Go 4.40 3.3.3.18

r __ ___ ___ ____ _ _ ___-~-* **- ___ ____ ___ __ __- ___ ___ __ .___ ___ ___
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case, aluminum plates were propelled at 4-in. diameter samples of
AAB-3189. Knowing the flyer-plate velocity, the shock pressure gen-
erated on impact at the plate-propellant interface can be determined by

. u .... ...... iiit,, hud (Rilerence 5). The shock veiocity in
the aluminum, UA1, and in the propellant, UPBAN, can then be calculated
directly from the HRgnn'inh of theme materials.

The time of contact, neglecting any attenuation of the shock wave in the
flyer plate, is given by

Jt 2 x ( i
UAl

where t contact time and x flyer-plate thickness. The duration time
of the pulse entering the propellant will be equal to t, and if attenuation
"in the propellant is neglected,

t

~=UPA (2)UPBAN

where w = the pulse width in the propellant. By. equating Equations 1 and
2 and rearranging,

ZXUPBANw (3
SUA 1

The Hugoniot reflection method is shown in Figure 1 for various values
of Lf, the particle velocity of the flyer plate. Shock pressures trans-
mitted at impact as a function of ILf are shown in Figure 2, and the pulse
width (mm) as a function of jif and x is shown in Figure 3.

3.2.2.2 Test Description

"Aluminum flyer plates 5-in. square were propelled at 4-in. diameter
cylindrical samples of AAB-3189 (critical diameter = 2. 7 in. ). The
pulse width and shock pressure were varied from test to test by proper

T, selection of flyer plate velocity and thickness.
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Figure 4 shows the test orientation. The T-1 target switches are located
in the path of the plate, at a measured separation from each other, so
That the veiociTy of ihe plaue u b uu ... A V- WY

7  
..-

steel plate placed against the rear of the acceptor charge functions as a
rv.itness plate to facilitate jin÷enptatinn of the test results.

3.Z.Z.3 Flyer -Plate Technique

An experimental method was developed to accelerate aluminum flyer
plates to velocities ranging from Z000 to 7000 fps. This velocity range
is required to obtain a shock pressure range suitable for the propellant
initiation-toc-detonation study. A flash X-ray system is used to monitor
the flight of the flyer plate. The flyer-plate velocity and the angle of
tilt required to obtain simultaneous impact of the flyer plate against a
target were then determined from the radiographs. The experimental
setup is shown in Figure 5.

F Initially, the tests were performed with a single sheet of Detasheet C
explosive. Only a limited amount of Detasheet of different thicknesses
was available at the Chino Hills Ordnance Laboratory, and a 10 to 12-
week lead time is required to obtain the explosive from the vendor.
Therefore, multiple layers of Detasheet C-I (0. 042-in. thick)-explosive
were used. The flyer-plate velucities obtained with the multiple layers
"of explosive were different from the velocities obtained with one layer
of the thicker Detasheet. The flyer-plate velocities, obtained as a
function of the explosive weight per square inch, are shown graphically
in Figures 6 through 9. A family of curves describing flyer-plate velo-
city as a function of plate thickness, using I to 4 layers of Detasheet
C-I, is shown in Figure 10. The angle of tilt of the flyer plate was
determined to be a function of plate velocity. The data are shown in

Figure 11.

F •During the program, it was found that the flyer-plate velocity, using a
specific explosive weight per square inch, could be reduced by using a
plywood test stand instead of steel. This increased the range of flyer-

F! plate velocities obtainable with the limited supply of explosives,

I-I
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- - 3. 2.2.4 Results

Sixteen tests were conducted after the developmental experiments were
concluded. Aluminum plates fromn 1/32 to I/Z-in. thick were flung at
velocities from 1868 to 6897 fps. The results of these tests are given
in Table 2 and Figures 1Z and 13. Examination of the figures reveals
an expected relationship betwecn the shock pressure and pulse width
required to initiate detonation. Pulses of smaller width require higher
pressure to achieve initiation of the acceptor. It is furthermore indi-

-, •.cated that a minimum pressure exists, below which initiation is impos-
sible with any width pulse. For the 4-in. diameter samples, this
minimum pressure is near 30 kbar.

3. 2. 3 Initiation Pressure vs Diameter (Subtask 3. 3. 5)

} . The purpose of this subtask is to determine the initiation criteria for

adulterated propellants, with the objective of extrapolating these to .
r• postulate an initiation criterion for unadulterated propellant. The initia-
I tion criterion in its simplest form is defined as the region in the pressure-

diameter Rlane that includes all points with coordinates greater than
"s afci(d), d],. Here, P+ (P-cross) is the minimum shock pressure re-
quired to initiate detonation of a cylindrical sample of diameter d. P+
is a function of d, indicated by P+ (d), and this function is defined by
determining P+'s at various d's.

The initiation criterion can be expressed similarly with the shock wave
¶ area A substituted for d. This permits the concept to be applied to non-

cylindrical shapes. As indicated in Section 3. 2. 2, the initiation criter-
ion should also include pulse width as a variable, to be realistically
meaningful. Therefore, the results of the tests described in this section
do not constitute full definition of the initiation criterion. In the absence
of evidence to the contrary, it has been assumed that the pulse width of

Sr• •the shock wave entering the samples from the Plexiglas attenuator does
not change sufficiently with length of Plexiglas to jeopardize the assump-
tion that the initiation criteria shown here are in the P, d plane and not

a projection onto that plane.

I.
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The estimation of the initiation criterion requires that several things be
known or determined: first, the Hugoniots of the attenuator and the
acceptor; second, the shock velocity (or pressure) attenuation as a func-
tion both of the initial velocity (or pressure) and the distance traveled
in the attenuator; and third, the card-gap test results. These several
areas are discussed in the following sections.

3. Z. 3. 1 Plexiglas Hugoniot

The Hugoniot equation of state for Plexiglas that is, used in the reduction
Sof all sensitivity data under the SOPHY programs was determined at

Aerojet (Reference 6). This equation is

SU=,2.546 +2.153 (4)

"where U is the shock velocity (rnm/ptsec) and L is the particle velocity
p '(mm/"sec). With Plexiglas having a density (po) of 1. 186 gm/cm 3 ,

Equation 4 may be combined with P 10 P U0 Ui to give these two equa-

tions:2

.P = 5.51 U " 14, 03U (5)

and

P-30.25.L +25.58jL (6)

3.2.3.2 Propellant Hugoniots

The Hugoniot equations of state for AAB-3189 and -3225 were reported
earlier (Reference 3). A sinall error in the computer program has since
been discovered, and the following are the corrected Hugoniots of these
formulations:

For AAB-3189 (po= 1. 725 gm/cm 3 ),

U = 1.89 + 2. 63 (7a)

P = 6. 56 U2 - 12,42 U (7b)

"P = 32.7p. + 45.4ýL2  (7c)

K'
C:
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For AAB-3Z25 (Po 1. 735 gm/cm 3 ),

U = 1.60 + 3 .45 L (8a)
P = 5.03 UZ - 8.07 U (8b)

P = 27. 4L + 59.8 1.' (8c)

The Hugoniot equation for AAB-3267 adulterated propellant was deter-
mined by analyzing streak camera records of a shock wave passing
through successive Plexiglas-propellant interfaces, as described in
Reference 3. The resultant Hugoniot, obtained by the Hugoniot reflec-
tion method, is

P -36.971 + 36.961 ' (9a)

from which the other equations can be derived, to give

U 2.13+ 2. 13� .(9b)

and

P 8.15 U?- 17.4 U (9c)

3.2.3.3 Shock-Pressure Attenuation in Plexiglas

In SOPHY I, the boosters were cast Composition B, and the acceptors
were solid circular rods of Plexiglas, varying from 3-in. dib.meter to

S6-in. diameter (Reference 2). In the present effort, the booster ex-
plosive is TNT because the card-gap tests include several large dia-
meter samples, requiring large quantities of explosive, and TNT is the
more suitable explosive for large boosters. The Plexiglas attenuator
is composed of stacked square plates of Plexiglas. To achieve certain

r savings in test costs, the square shape was selected over the round.
With sample diamn eter ranging from 6 to 42 in., it would be prohibitively
expensive to conduct the tests with integral columns of Plexiglas; hence,
the stacked-plate design.

Originally, the shock attenuation in the square-plate columns was to be
f! determined optically with the standard test setup, including argon-bomb

backlighting and the Beckman and Whitley streak camera. After per-
forming several tests with streak-camera instrumentation, each of which

=No
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produced generally poor records, it was apparent that another method was
required to obtain distance-time data. The adopted method used sets of
two parallel enamelled-copper wires, at various interfaces in the Flexi-
glas column and at the Plexiglas-propellant interface, to obtain time-of-
arrival data. This information was recorded on a rasteroscillograph.
The success of this method is demonstrated by excellent reproducibility
and indicated by the smooth behavior of the distance-time data. The
system appears to be limited, however, to sizes below Z0 in. , because
the quality of the results deteriorated beyond that point. At the larger
sizes, it was found that mechanical target probes inserted in spaced
plates gave excelley time-of-arrival information.

The determination of shock attenuation in columns of Plexiglas 8-, 10-,
12. 12-, 20-, 24-, and 42-in. square, by means of probes, is a significant
advance in technology. The distance-time data are shown in Table 3.
In Figures 14 through 19, the data are plotted'along with the least-squares
best-fit quadratic curve for each size Plexiglas column. The quadratic
equations were differentiated to determine the velocity-distance\ data,
which were transformed to pressure-distance by the Ple.xiglas Hugoniot
equation..

This method was employed -to reduce the data instead of the numerical
differentiation method because the data were acquired at unequal incre-
ments in both variables. Numerical differentiation of such data is nor-
mally accomplished by differentiating the Lagrange or Hermite interpo-
lation formulas, but no estimcte of the error is possible when these
formulas are applied, so the method is not particularly attractive. Also,

[ these two methods do not function well when there is a large relative
difference between successive intervals. Since the quadratic fits to the
distance-time data do approximate the data closely, this method has been

S[ adopted.
t

The computed initial shock pressure Po in Plexiglas from a TNT booster
is estimated, from the differentiated fits to the square-column data, to
be 118 kbar.

{• A comparison of the P/Po versus x/d data obtained from these fits with
the corresponding curve derived from the SOPHY I study (Reference Z)
is shown in Figure Z0. Here, P is the shock pressure, x is the distance
traveled in Plexiglas, and d is the diameter of the circular column or the
length of a side of the square plate. The excellent gruphical correlation
shows that the attenuation process is essentially determined by the initial



0977-01(06)QP

Table 3. Attenuation of Shock from T'T Booster by
St:cked Squares of Ph•,ipa .

Plexiglas Column Distance Traveled Time of
Cross-Section in Phlkxiglas ArrivalS(in,. (in.) (ýSec)

1.00 4.37
1.31 6.25
2. 00 9.44
"2.81 14.05
3. 00 14.63

8x8 3.53 17.5
4.00 20.1
4.28 22. 2S5.0O0 25.6

• 6.47 34.85 l
S6. 70 37.5,

7.25 40.9

3 ,3.00 14.4
4,00 19. 5
5100 .25.0

lOx 10 7.00 37.0
7, 57 41. 1
8. 52 47.5
9.50 55.5.

S• i 10.00 59. 5
2.00 9.0
5.00 25, 0

,,,,, , , 1 x 1,2 9.75 54,.3

10.80 61, 1.'11.00 63.0
_ _ _ _11.80 70.7

- - 7.00 35, 0
9.50 52.5

20 x 20 13. 50 70.0
"16, 50 92. 1
18.50 107.0

20,65 1,37. 5

r 24 x 24 11.75 60.0
- 23,50 136.0

25. 00 125.6
{i 27. 10 142. 0

31.00 166.8
42 x 42 32. 70 177.0

34.75 191. 5
38.70 220. 0
40.50 235, 5
42.00 248.0

-' -- --N N
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shock pressure and two geometrical parameters; i.. e., the distance
traveled and the cross-sectional dimension of the attenuator column.

data from Plexiglas columns as small as l/2-in. diameter, it holds
over an 84-fold range.

3.2.3.4 Card-Gap Tests

Plexiglas card-gap tests are conducted in the standard manner by testing
whether a certain thickness of Plexiglas attenuates the shock wave de-

livered by a high-explosive booster to a level insufficient to initiate a
supercritical cylindrical acceptor charge. If detonation is not achieved,
less Plexiglas is used in the next test. This sequence continues until a
thickness is found that allows detonation to be initiated. At this point the
sequence reverses, using smaller incremental changes in the Plexiglas
thickness, until no detonation occurs, The process again is reversed.
The testing continues in this fashion, decreasing the increments after.
each reversal, until the go-no-go range has been reduced to the desired
limit.

The results of the card-gap testsperformed in this subtask at certain
diameters, bracket P+ within a 5 to 6 kbar range, which is the largest
range in all the data. In general, at the other diameters, P+ has been
bracketed within 1 to 2 kbars. The results of the card-gap tests define
the initiation criteria of these propellants quite adequately.

These results are given in Tables 4 through 6. The initiation criteria for
the three propellants are shown individually in Figures 21 through 23,
and are combined (using a reduced-diameter abscissa, d/dc) in Figure 24.

3. 2. 3. 5 Extrapolation to Unadulterated Propellant -

From Figure Z4, it is clear that P+ at the critical diameter decreases
as the critical diameter is increased. The estimates of P+ are, in order
of increasing critical diameters, 62, 37, and 34 kbar. The last value is
extremely tentative because of the lack of sufficient data with the AAB-
3267 material. Nevertheless, it is clear that the rate at which P+ at
the critical diameter is decreasing, with respect to the weight fraction
RDX, is diminishing rapidly. Assuming a monotonic behavior, the P+
for unadulterated propellant could be 20 to 25 kbar, at the critical dia-
meter.

( ....
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Table 5. Card-Gap Test Results,
AAB-3225 Propellant.

fPropellant Plcxiglas Incident Pressure Transmitted Pressure
Diameter Thickness in Plexiglas* in Propellant* Test Test

(in.) (dia) (kbar) (kbar) Result Number

0.618 34 41 Go 3,3.5. 1
0. 742 26 31 Go 3.3.5.3

6 0.809 23 27 Go 3.3.5. 11
0.816 22 26 No go 3,3.5.7
0.,840 21 24 No go 3,3.5.9

0,860 20 23 No go 3, 3.5.2

L 0.778 24 28 Go 3.3.5. 14
0,833 21 24 Go 3.3.5. 15

S0.858 20 23 Go 3.3.5. 18
0.889 19 22 Nogo 3,3.5.13

0,881 19 22 Go 3.3.5.4

0,925 18 21 Go 3.3.5. 10
8 0.956 17 20 Nogo 3,3.5.8

1.000 15 17 Nogo 3.3,5.6
1.112 13 15 No go 3,3,5.5

0.823 22 Z6 Go 3.3.5.31
0.901 18 21 Go 3.3.5.52

12 0.912 18 21 Go 3,3.5.32
0.995 15 17 No•go 3,3.5.51
1.073 i 16 No go 3,3.5, 30

0.828 2226 Go 3,3.5.33
"" .0.922 18 21 Go 3.3.5,35

20 0.956 17 20 Go 3.3.5.39
0.969 .16 19 Go 3.3.5, 53
1.017 15 17 No go 3,3,5.34

0.896 19 22 Go 3.3.5. 37
0.938 17 20 Go 3.3.5.38

24 0.938 17 20 Go 3.3.5.54
0.977 16 18 Nogo 3.3,5. 36
0.977 16 18 No go 3.3.5.50

* .. a f
S*At Plexiglas -pr opdl ant I ntŽ rfaco,

[.!
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•,':4 is the minimum P+ , approached as d increases to the ideal diameter.

Frorn Figure 24, the various estimnates of P* -- 20 kbar for AAB-3189,
19 kbAr for AAR_-'A?? .-.. , 1 R U2IU I T-

each other. By extrapolating the gradual decrease in P* with decreasing
RDX, the P* for unadulterated propellant may be 8 to 10 khar.

These estimates of two points on the initiation criterion for unadulterated
propellant receive some support regarding their general magnitude from
another analysis. It is observed that, at the critical diameter, P+ is

very close to the spike detonation pressure calculated from the P(U)
Hugoniot equation at U = Uc, the detonation velocity of a sample at critical
diameter. For AAB-3189, P+ is 62 kbar, and the computed spike deto-
nation pressure is 65 kbar. For AAB-3225, P+ is estimated to be 37 kbar,
and the computed spixe detonation pressure is 50 kbar. For AAB-3267,
P+ is estimated to be 34 kbar, and the computed spike detonation pres-
sure is 48 kbar. From the results of the 7Z-in. critical-diameter test of
ANB-3226 (unadulterated propell.nt), the detonation velocity was
3. 2 mm per "sec (Reference 7). Assuming that the P(U) Hugoniots for
AAB-3267 and ANB-3226 are the same for P < 25 kbar, which hau been
the case for the three adulterated formulations, the spike detonation pres-
sure of ANB-3226 can be estimated. For the 72-in. diameter sample,
this estimate is 29 kbar. Since the 7Z-in. diameter is greater than or
equal to the critical diameter, 29 kbar is greater than or equal to the
spike detonation pressure at the critical diameter and is therefore an upper
bound on the estimated value of P+ at critical diameter.

3. 2.4 Sensitivity of Unadulterated Propellant (Subtaak 3. 3. 6)

This subtask investigates the use of an axial resistance-type probe in
subcritical samples to determine P*. In SOPHY I, a series of tests was
performed to evaluate the initiation criterion (Referenme 2). By using
small diameter boosters on supercritical samples, the initial size of the
shock wave was varied to find the smallest diameter booster that would
initiate the propellant. In cases where the shock wave was too small to
initiate detonation, it was observed that, for the first diameter along
the acceptor axis, the velocity of the shock wave was essentially equal
to the detonation velocity. The wave attenuates more rapidly at farther
distances from the axis.

o1.
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This phenomenon suggested that a subcritical sample, explosively
shocked, may appear to sustain detonation momentarily along its axis
before the rarefaction losses abort the reaction. The material at the

would be independent of the size of the sample, for a very short time.

The problem is to monitor the velocity at the charge axis continuously,
and by varying the input shock pressure, to determine the minimum
pressure that causes a temporary sustainment in velocity. To moni-
tor the axial velocity, resistance probes were cast at the axis of 2-in.
diameter samples of AAB-3189 propellant and similarly in ANB-3226

samples of 6-, 12-, and 24-in. diameter.

The probe is electronically in series with a fixed resistor in a con-
stant-voltage dc circuit, and the voltage across the fixed resistor is
fed to an oscilloscope. The changing effective length-% of the axis resis-
tor, as the ionized shock front moves down the chargc, reduces the

resistance of the probe and causes an increase in the voltage across
the fixed resistor. Thus, the output trace can be easily related to the
distance-time behavior of the shock wave.

The first phase consisted of testing the AAB-3 189 samples to determine
the validity of the assumptions that had been made. Card-gap tech-

niques were applied to vary the shock pressure, in the region from less
than 20 to more than 100 kbar. The results were not those that had
been expected. The shape of the pulse, even when no attenuation was
used in the test, indicates that there were several uncontrolled factors
involved, because a literal reduction of the data leads to highly un-
realistic shock velocities. Furthermore, there was no evidence found

that could identify a pressure level below which the propellant behaved

differently. Thus, it was impossible to determine a pressure to be

compared to P* as determined from supercritical card-gap tests.

The probe system was checked with a detonating material, Composition B,
and a linear trace was generated. While the system operates well where
there is sustained detonation at high velocity, it does not function accept-

ably in the transient, subcritical region. It must be concluded that the
method proposed to determine P* from subcritical samples will not

work. On this basis, the tests with ANB-3226 have been canceled.

1~

-I
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Sirce the difficulty may have been due to limitations in the abiity of
this probe design to function properly, it is possible that another method
could be developed that would use subcritical samples to determine P*.

further research effort in exploring the subcritical samples as a source
of this information. Many small-scale tests can be performed to evalu-
ate various approaches at less cost than would be incurred by a series of
supercritical card-gap tests to bracket Pt" at a specific diameter.

4. PROPELLANT DEFECTS STUDY

A summary report on the progress achieved in developing methods to
synthesize and characterize porous and cracked propellant has been pre-
pared by project personnel in the Propellant Development Department,
Research and Technologl Operations, at Aerojet's Sacramento Plant.
This report will be included in the final report under this contract.

5. FUTURE WORK

A 2-1/2-month extension of the contract at no additional cost has been
proposed, which will include investigation of three additional areas:
(1) the effect of other published Hugoniots for Plexiglas on the derived
initiation criteria for adulterated propellants, (2) evaluation of the in-
itiation rriterion for AAB-3189 by testing 6-in. cylindrical samples, and
(3) evaluation of the initiation criterion for AAB-3189 applied to rec-
tangular cross-section shapes,

5.1 PLEXIGLAS HUGONIOT

There are several published Hugoniot equations of state for Plexiglas,
Lucite, or Perspex, which are trade names for polymethylnethacrylate.
These Hugoniots differ from one another, and there is no completely
objective basis for determining the one that is most accurate. The Plexi-
glas Hugoniot is required to determine the propellant Hugoniots and the
shock pressure attenuation in Plexiglas, and it is also required to cal-
culate the shock pressure transmitted in propellant from knowledge of
the sbock pressure in Plexiglas incident to the Plexiglas-propellant
interface.
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Each of the published Hugoniots will be used with the data obtained in
this program to calculate the cffect on the initiation criterion values.
If the final results agree sufficiently well with values obtained using
the Aerojet Hugoniot equation, there will be no reason to analyze the
situation further. However, if significant differences are found, it will
be necessary to determine the relative merits of the various Hugoniots,
particularly with respect to the range over which they were determined
and the method to obtain the Hugoniots. If the investigation so indicates,

thsinitiation criteria will bte kfop~e U-i, C- eri d £ CVUll rms, au reduced
from the respective Plexiglas Hugoniot equations. The criteria then
will be subject to further definition of the Hugoniot equation for Plexi-
glas.

5. 2 EVALUATION OF INITIATION CRITERION

5.2. 1 Cylinders

The initiation criterion of AAB-3189 will be evaluated using cylindrical
samples. High-explosive boosters of various diameters will be used to
apply input shock waves of different initial areas and pressures into
6-in. diameter acceptors. The acceptors will be instrumented to pro-
vide data from which the shape of the wave and the pressure profile can
be calculated at any time in the history of the wave. The data then will
be plotted as average pressure P5vs A, against the corresponding in-
itiation criterion, to determine whether the hypothesis of the initiation
criterion is honored.

5.2.2 Rectangles

The initiation criterion is postulated to be a property of the material and
not dependent on the shape of the test sample. The initiation criterion
is therefore defined as that portion of the go region in which A > Ac, the
cross-sectional area of the critical size of any particular shape. This
hypothesis will be studied in two ways; First, a series of tests will be
conducted to evaluate the initiation criterion as described in Section 5.2.1.
Secondk highly instrunmnted card-gap tests will be performed on rectan-
gles of width equal to two thIc.knesses. The P+ near critical should be
less than 50 kbar since the critical cross-sectional area is 8 in. 2 (se*
Figure 85, Reference 2). The shock wave will not be a plane wave, so
its area will exceed 8 in. 2, and P1 should then be less than 50 kbar. If
the hypothenis is wrong, that is, if P+ should be found to be greater than
50 kbax', the initiation criterion will have to be redefined for the rectangular

[ shape.
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